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Outline of this Talk

 What is quantum friction?

Atom-surface interaction: non-equilibrium
Atom-surface interaction: equilibrium

  Moving oscillator
  Fluctuation-dissipation vs quantum regression 

  Moving two-level atom
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 Revisiting other approaches 
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An intuitive picture
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An intuitive picture
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Photons and plasmon field 
perceived with a Doppler 
shifted frequency 
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A variety of predictions
Zero temperature atom-surface quantum friction
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Warm-up: Static atom

ρ̂(0) = ρ̂a(0)⊗ ρ̂fm(0)

Fz(t) = Re

�
2i

π

� ∞

0
dω

� t

0
dτe−iωτTr

�
�d̂(t)d̂(t− τ)� · ∂zGI(ra, ra,ω)

��

 Two-time correlation tensor: Cij(t, t− τ) ≡ �d̂i(t)d̂j(t− τ)�

 vdW-Casimir force on a static atom: Fz(t) = �d̂(t) · ∂zaÊ(ra, t)�

How to compute the two-time dipole-dipole correlator?

• Solve the exact dynamics (when possible!)
• Time-dependent perturbation theory
• Large-time limit: stationary (dressed) states, equilibrium 

Ĥ = Ĥa + Ĥfm + ĤintFull evolution:

Initial state of atom+field+matter:
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Fluctuation-dissipation
ρ̂(∞) = ρ̂KMS ∝ e−βĤ

(Kubo-Martin-Schwinger) 

 Large time correlator Cij(τ) = tr
�
d̂i(0)d̂j(−τ)ρ̂KMS

�

 Fluctuation-dissipation (FDT)

 Stationary density matrix

power spectrum polarizability

S(ω) = (2π)−1

� ∞

−∞
dτeiωτC(τ) α(τ) = (i/�)θ(τ)tr{[d̂(0), d̂(−τ)ρ̂KMS}

S(ω) =
�
π
θ(ω)αI(ω)

(Callen & Welton 1951) -Linear response
- Exact result

 Stationary vdW-CP force

FCP =
�
π

� ∞

0
dξTr{α(iξ) · ∂zG(ra, ra, iξ)}
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Quantum regression 
 Onsager regression theorem: The average regression of fluctuations 

obeys the same laws as the corresponding irreversible process (Onsager 1931)

 Quantum regression hypothesis (aka “theorem”, QRT) (Lax 1963)

C(t, t− τ) ≡ �d(t)d(t− τ)� = �d2(t)�e−i(ωa−iγa/2)τ

 FDT and QRT predict different decays

-weak coupling
- Markov approx

- “Short” times (                ): exponential decay  τγa � 1

- “Large” times (               ): power-law decay τγa � 1 QRT �= FDT

QRT = FDT

Cij(t, t− τ) = didje
−i(ωa−iγa/2)τ +

�
τ → ∞ ∝ γa

ωa
(ωaτ)

−n

�

QRT predicts the wrong vdW/CP force
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Quantum friction (T=0)
Fext(t)

 Prescribed motion
maẍa(t) = Fext(t) + Fx(t)

 Stationary                 frictional force(t → ∞)

Cij(τ ; vx) = tr{d̂i(0)d̂j(−τ)ρ̂(∞)}

Ffric(t) = �d̂(t) · ∂xÊ(ra(t), t)�

Ffric = Re

�
2

π

�
d2k

(2π)2
kx

� ∞

0
dω

� ∞

0
dτe−i(ω−kxvx)τTr[C(τ ; vx) ·GI(k, za,ω)]

�

 No general results as in the equilibrium case ρ̂(∞) = ???

ra(t) ={
(xa + vxt, ya, za) for t > 0
(xaccel(t), ya, za) for ta < t < 0
(x0, ya, za) for t < ta
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NEQ FT and q-friction

 Non-equilibrium power spectrum S(ω; vx) = (2π)−1

� ∞

−∞
dτeiωτC(τ ; vx)

 Small velocity analysis: no linear-in-v terms

SR(−ω; vx)- Contributions from                       cancel upon integration over kx
SR(kxvx − ω; 0)- Contributions from equilibrium FDT!

Ffric = −2

�
d2k

(2π)2
kx

� ∞

0
dω Tr[S(kxvx − ω; vx) ·GI(k, za,ω)]

∆(ω) =
�(ω)− 1

�(ω) + 1
Ffric ≈ − 45�

256π2�0
α�
I(za, 0)∆

�
I(0)

v3x
z7a

It is still possible to draw general conclusions about the frictional force 
in the low-velocity limit.

vdW regime: α�
I(za, 0) ∝ z−3

a
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Results

QRT
Neglects low frequencies

Cij(τ ; 0) = didje
−i(ωa−iγa/2)τ S(ω; 0) =

� ∞

−∞

dτ

2π
eiωτC(τ ; 0) Ffric ∝

vx
z8a

Harmonic 
oscillator model

Exactly solvable model Ffric ∝
v3x
z10a

Second order 
perturbation theory γa → 0 FDT = QRT Ffric ∝ e−a/vx

FDT S(kxvx − ω; 0) =
�
π
θ(kxvx − ω)αI(kxvx − ω) Ffric ∝

v3x
z10a

0 ≤ ω ≤ kxvxNonzero for (relevance of low freq)
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Moving harmonic oscillator
 Dipole moment d̂ = dq̂ ¨̂q(t) + ω2

aq̂(t) =
2ωa

� d · Ê(ra(t), t)

 Dynamic polarizability of moving atom

αij(ω; vx) =
2ωa

� didj

�
−ω2 + ω2

a −
2ωa

�

�
d2k

(2π)2
d ·G(k,ω + kxvx) · d

�−1

 An exact, non-equilibrium fluctuation-dissipation relation

S(ω; vx) =
�
π
θ(ω)αI(ω; vx)−

�
π
J(ω; vx)

Non-equilibrium FDT in classical 
models have the same form

 Using                one can reobtainsS(ω; vx) Ffric ≈ − 45�
256π2�0

α�
I(za, 0)∆

�
I(0)

v3x
z7a

(Chetrite et al. 2008)

J(ω; vx) =

�
d2k

(2π)2
[θ(ω)− θ(ω + kxvx)] α(ω; vx) ·GI(k,ω + kxvx) · α∗(ω; vx).
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Orders of magnitude
 Near-field quantum friction 

Ffric ≈ −45�ρ2α2
0

512π3

v3x
z10a

surface’s electrical resistivity
static atomic polarizability

87Rb Example: ground state            flying over a silicon surface 

α0 = 5.26× 10
−39

Hz/(V/m)
2

vx = 340 m/s
za = 10 nm

ρ = 6.4× 102 Ω m Ffric ≈ −1.3× 10−20 N !

 How to enhance it? How to measure it?
- excited atomic states?
- higher velocities?
- materials with higher resistivities?
- macroscopic bodies?
- ???

- atomic interferometry?
- near-field AFM?
- ???

⇒
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Revisiting other approaches
 Previous calculations using master equations, Markovian approx, 

and QRT obtained in the large-time limit 

 Previous calculations using perturbation theory predicted 

FQRT
fric ∝ vx

F pert
fric ∝ vx

(Barton 2010)
Issues:  - short times, weak coupling
              -  instantaneous boost of the atom
 

Issues: -  Markov/QRT give the wrong large-t decay of correlators
             -  Quantum friction is a low frequency phenomenon
             -  Results valid only small-t limit, where FDT=QRT 

(Buhmann+Scheel 2009)

Note: This part of the work also in collaboration with Carsten Henkel (Postdam)
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Perturbative quantum friction
 Power dissipated into pairs of real plasmons excited in the surface

 Second-order time-dependent perturbation theory for |Ψ(t)�

c(2)|0;kω,k�ω��(t) = −α0Ω2ω2
s

8π

√
kk�gωgω�e−(k+k�)za
√
ωω�F ∗(ω)F ∗(ω�)

M(t)

F (ω) = ω2
P − ω2 − iωΓ

g(ω) = ω
�

2Γ/πatomic transition frequency

(Drude-like dielectric permittivity)

M(t) =

� t

−∞
dt�

� t�

−∞
dt��

�
ei(−Ω+ω)t�ei(Ω+ω�)t��e−ik·r(t�)e−ik�·r(t��) + {kω} ↔ {k�ω�}

�

P = lim
t→∞

1

2

�
d2k

�
d2k�

� ∞

0
dω

� ∞

0
dω��(ω + ω�)

|�0;kω,k�ω�|Ψ(t)�|2

t

Ffric = P/vx
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Dependency on boost

 Sudden boost 

ax(t) = vxδ(t− ta)

ra(t) ={
(xa + vxt, ya, za) for t > 0
(xaccel(t), ya, za) for ta < t < 0
(x0, ya, za) for t < ta

 Boosting the atom

 How acceleration phase influences the power dissipated 

P = PA + PB

(independent of the boost) (depends on the boost)

�
����
� 0

−∞
ds

ax(s)

vx
ei(Ω+ω)s

����
2

v2x� v4x

Adiabatic boost 

ax(t) =
vx
2τ

�
1 + cosh

�
t− ta
τ

��−1

P (sudden)
A � P (sudden)

B

F (sudden)
fric � vx

z8a
F (adiab)
fric

τΩ�1� v3x
z10a

P (adiab)
B

τΩ�1≈ e−2πτΩP (sudden)
B � P (adiab)

A
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Conclusions

  Atom-surface quantum friction from general non-equilibrium stat. 

 Non-equilibrium FDT predicts a cubic-in-v frictional force

 At high temperatures (classical limit),                          , and linear-in-v 
friction

QRT = FDT

 Same analysis possible for quantum friction between macroscopic 
bodies

 Identified issues with previous approaches 

- Correct low frequency behavior missed by Markov, QRT
- Perturbative calculations depend on boost history
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